Trichotomy, Stability, and Oscillation of a Fuzzy Difference Equation
نویسنده
چکیده
Difference equations have already been successfully applied in a number of sciences (for a detailed study of the theory of difference equations and their applications, see [1, 2, 7, 8, 11]. The problem of identifying, modeling, and solving a nonlinear difference equation concerning a real-world phenomenon from experimental input-output data, which is uncertain, incomplete, imprecise, or vague, has been attracting increasing attention in recent years. In addition, nowadays, there is an increasing recognition that for understanding vagueness, a fuzzy approach is required. The effect is the introdution and the study of the fuzzy difference equations (see [3, 4, 13, 14, 15]). In this paper, we study the trichotomy character, the stability, and the oscillatory behavior of the positive solutions of the fuzzy difference equation
منابع مشابه
Convergence, Consistency and Stability in Fuzzy Differential Equations
In this paper, we consider First-order fuzzy differential equations with initial value conditions. The convergence, consistency and stability of difference method for approximating the solution of fuzzy differential equations involving generalized H-differentiability, are studied. Then the local truncation error is defined and sufficient conditions for convergence, consistency and stability of ...
متن کاملCoordinated Control of Doubley Fed Induction Generator Virtual Inertia and Power System Oscillation Damping Using Fuzzy Logic
Doubly-fed induction generator (DFIG) based wind turbines with traditional maximum power point tracking (MPPT) control provide no inertia response under system frequency events. Recently, the DFIG wind turbines have been equipped with virtual inertia controller (VIC) for supporting power system frequency stability. However, the conventional VICs with fixed gain have negative effects on inter-ar...
متن کاملBEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION
In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
متن کاملDynamics of higher order rational difference equation $x_{n+1}=(alpha+beta x_{n})/(A + Bx_{n}+ Cx_{n-k})$
The main goal of this paper is to investigate the periodic character, invariant intervals, oscillation and global stability and other new results of all positive solutions of the equation$$x_{n+1}=frac{alpha+beta x_{n}}{A + Bx_{n}+ Cx_{n-k}},~~ n=0,1,2,ldots,$$where the parameters $alpha$, $beta$, $A$, $B$ and $C$ are positive, and the initial conditions $x_{-k},x_{-k+1},ldots,x_{-1},x_{0}$ are...
متن کاملIntuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کامل